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Abstract
A new chain criterion, for the determination of little groups, is presented. This
result distinguishes massive (rotationally inequivalent) irrep basis functions and
allows for multiple branching paths; consequently, it is suitable for application
to Lie groups. Applied to the groups O(3), SO(3), D∞h, D∞, C∞v , C∞h, and
C∞, the result enables the enumeration of all possible little groups, together with
their associated basis functions. These results are relevant to the determination
of the symmetry of a material from its linear and nonlinear optical properties
and to the choices of order parameters for symmetry breaking in liquid crystals.

PACS numbers: 02.20.-a, 05.70.Fh, 42.65.-k, 64.70.Md

1. Introduction

Little groups, or isotropy groups, have proved extremely valuable in many disciplines.
Essentially, the little group is the exact symmetry, or the largest possible group of
transformations, under which a mathematical object, specifically an irreducible representation
(irrep), is invariant. Formally, if |λl〉 is a component (basis function) of an irrep λ of a group G,
then the little group Hλl may be defined as Hλl = {g ∈ G|g|λl〉 = |λl〉}. If two irrep vectors
λa and λb exist such that λa = gλb, then it is clear that λa and λb must have the same intrinsic
symmetry, only re-oriented by the operation g. The corresponding little groups are conjugate
and, as such, are equivalent, Hλa

∼ Hλb
. Consequently, the set of all possible different little

groups of λ will be discrete, even when G is a Lie group. A three-dimensional irrep of O(3),
such as an electric field vector, exemplifies this; it is well known that this irrep only has one
possible little group (C∞v) although the three components of the irrep may be combined in
uncountably many different ways, such that the C∞ symmetry axis may be rotated to point in
any direction. This infinite freedom makes the enumeration of all possible little groups of the
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irreps of Lie groups non-trivial; for discrete groups one may in principle test the behaviour of
some |λl〉 under the application of all the elements of G in turn, but when G is a Lie group the
number of elements is uncountably infinite and so the direct approach becomes impossible.

The aim of this paper is to provide a method for enumerating the little groups of Lie groups,
and then to apply it to the group O(3) and all of its Lie sub-groups. The value of such results
is significant, as applications of the little group concept cover the gamut of theoretical physics
and applied mathematics. The utility of the group theoretical approach to symmetry breaking
problems arises because, often, the symmetries of solutions do not depend on the details of
the governing equations, only their symmetry. Complete solutions still require analysis of
the governing equations, but group theoretical selection rules may reduce the manifold of
possibilities to a manageable number.

In bifurcation theory (e.g. Keller and Antman 1969), when a bifurcation occurs the
symmetry of the solution is often a subgroup of that of the ground state. Examples include
the spherical Bénard problem, which involves finding the steady states in the buckling of an
elastic spherical shell (like a red blood cell) or in the convection of a viscous fluid confined
between two concentric spherical shells (like the magma between the crust and the core of the
Earth). It has been successfully approached via the Liapunov–Schmidt reduction (Sattinger
1978), which is contingent upon knowledge of the little groups of O(3) (Ihrig and Golubitsky
1984). A similar problem is that of finding the equilibrium of a rotating self-gravitating fluid.
The relevant equations depend on the square of the angular momentum. Consequently, they
and their unbifurcated solutions (known as Maclaurin ellipsoids) are invariant under the group
D∞h. The first symmetry breaking solutions were found by Jacobi (1834) and are known as the
Jacobi ellipsoids (symmetry group D2h). Poincaré (1885) made further contributions. It was
not until relatively recently (Constantinescu 1979) that a complete (infinite) set of solutions
were found for bifurcations from both the Maclaurin and Jacobi ellipsoids using the little
groups of D∞h and D2h, respectively.

Little groups are frequently used in physics when spontaneous symmetry breaking occurs;
solution of the Higgs potential minimum problem often relies on knowledge of the little groups
of the relevant representation of the gauge group (Girardi et al 1982, p 381). Similar tactics
may be adopted to find the symmetry of a system described by the Landau theory of second
order phase transitions (Jarić 1986). Since a transition occurs from a more symmetrical group
(say G) to a less symmetrical group (say H ) one may describe the system in terms of the irreps
of G. The order parameter belongs to the identity representation of H but not to the identity
representation of G. Thus, a reduction of symmetry G → H � G is most appropriately
quantified by an order parameter that has H for its little group. Little group techniques
successfully predict all known superfluid phases of He3 (Vollhardt and Wölfle 1990) and
provide the starting point for all phenomenological theories of them. One similar area where
little groups have, perhaps, been under-exploited is in the phase transitions of liquid crystals.
The nematic and cholesteric phases involve symmetry breaking from O(3), whilst smectic and
hexatic phases often break D∞h symmetry.

Another application that we have in mind is the determination of the symmetry of a
system by (for example) experimental measurement of its optical properties, both linear and
nonlinear. It is well known that the symmetry of a system may be ascertained to some degree
from its spectra, but that the extent to which the symmetry can be pinned down varies with the
technique used. For example, the dielectric tensor ε of a crystal usually has a higher symmetry
than the crystal point group G: ε is biaxial (diagonal) if G ⊆ D2h, uniaxial (diagonal and with
εxx = εyy) if G �⊆ D2h but G ⊆ D∞h, and isotropic otherwise. The reason is conspicuous
from section 5; such a symmetric even-parity second-rank tensor must transform under O(3)
as lπ = 0+ ⊕ 2+, and the relevant little groups—O(3), D∞h and D2h—dictate the appropriate
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form of the tensor. The same mathematics may be applied to justify the manner in which the
moment of inertia tensor of undergraduate physics can be represented by an ellipsoid, even for
objects with far less or even no symmetry. Another problem that may be similarly elucidated
arises in ligand-field theory where experimentalists often use tabulations by point group of the
symmetry conditions on ligand-field parameters (Newman 1971). In establishing the non-zero
and related elements of such objects, it is normal to assume a particular axis system. However,
many spectroscopic fitting techniques (such as the fitting of the parameters in a crystal-field
Hamiltonian to an observed energy level spectrum) are ignorant of the coordinate system used
in the theory, and are vulnerable to the associated introduction of unphysically high numbers
of parameters. Such results, familiar in the folklore of crystal-field theory, can be put on a
firmer foundation by recognizing them as consequences of the identification of little groups for
the relevant O(3) tensors. For example, in the ligand-field theory of a system with symmetry
C4h inclusion of the parameter A4

4− (the coefficient of the corresponding tesseral harmonic
Zl

m with l = 4, m = 4−) in a level fitting program leads to indeterminancy in the fitting
procedure, because its value is arbitrary in the sense that one may rotate the coordinates about
the z axis by any angle φ, changing the relative size of this parameter and A4

4+; hence a least
squares fit becomes indefinite through the ambiguity in the choice of φ. Instead, one should
define A4

4− to be zero, as if the symmetry were D4h. Section 5 gives a group-theoretic reason
for this observation: D4h, but not C4h, is a little group for l = 4+ (the parity of a crystal-field
Hamiltonian is positive since it acts within the d-electron manifold), and the tensorial structure
appropriate to D4h should therefore be used.

The results presented here are therefore of immediate interest in the theory of liquid crystal
phase transitions and in the identification of molecular symmetries from their spectra. They
are, however, of far more general application, as indicated above.

2. Chain criteria for little group identification

Several authors have investigated the little groups of the rotation groupSO(3). No fully reliable
algorithm for determining the little groups of O(3) or SO(3) has previously been reported.

Listings have been made of the little groups of the irreps (lπ where l = 0, 1, 2, . . ., and
π = ±1) of O(3). In many works, a chain criterion has been the central consideration. Such
criteria have been discussed extensively (Birman 1966, Goldrich and Birman 1968, Boccara
1973, Cracknell et al 1976, Lorenc et al 1980, Birman 1982, Jarić 1982, Przystawa 1982,
Gaeta 1984). The chain criterion has passed through several modifications in the literature,
and the little group listing alters with each modification. Problems in the analysis of Boccara
(1973), for example, are mentioned in appendix A. The remainder of this section begins with
a critical examination of the two most important works on the little groups of O(3), those
of Michel (1980) and of Ihrig and Golubitsky (1984). Then, in section 2.3, our main result,
the massive chain criterion, which allows correct enumeration of the little groups of O(3), is
presented.

2.1. Michel criterion

A systematic determination of the little groups of SO(3) was made by Michel (1980). He
used a form of the chain criterion (his lemma 2) except in the case of all cyclic groups, where
little groups were determined by inspection. The present work gives two small corrections
to Michel’s list. First, SO(3) is only trivially a little group for a non-identity irrep. Second,
Michel’s identification of D2 as a little group for l = 3 is incorrect (see appendix A). This
indicates an inadequacy in his chain criterion. The aim of this paper is to find an approach that
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generates the correct little groups and to extend the analysis to find the most general vector in
the group representation space for a given little group, generalizing these results to cover irreps
of the full rotation group O(3). Michel notes that this is trivial in the case of positive parity
representations if one knows the results for SO(3). This is because the full rotation group is
an outer direct product group: O(3) = SO(3) × Z2 = Z2 × SO(3), where Z2 denotes the
parity (inversion) group. Thus, if a representation belongs to the identity irrep of Z2, its little
groups will simply be the direct product of Z2 with the relevant SO(3) little groups. In the
case of negative parity no such simple prescription exists as improper operations may still be
present (as in the intrinsic symmetry of a true vector such as the electric field, the symmetry
of which is C∞v).

In his lemma 2 and table A.2, Michel (1980) used a group subduction criterion which may
be rephrased in the following form. If H is to be a little group of an orthogonal irrep λ (G),
for a strictly larger intermediate subgroup H ′ such that H ⊂ H ′ ⊂ G, and in particular for a
group H ′ adjacent to H in this group coupling chain, then

cλ(H
′) < cλ (H) . (1)

In this equation cλ (H) is the subduction frequency for H in λ(G), namely the number of
occurrences of the identity irrep 0 (H) in λ (G); it is readily determined from the Weyl trace
formula cλ(H ) = ∑

h∈H χλ(G) (h) / |H |.
From the above chain criterion the largest group H that has a particular cλ(H) is the little

group of that particular linear combination of basis functions. If one moves from a little group
to the next group up the group chain then the value of cλ(H) decreases because that increase in
symmetry removes one or more of the basis functions that were allowed at the lower symmetry.
The little group is then the maximal symmetry of some linear combination of basis functions.
A simple illustration of the application of this chain criterion is given in appendix A, where the
tables give the group–subgroup branching relations needed for the use of the chain criterion for
the 32 crystallographic point groups and also for other groups of interest in our applications.
The entries are the subduction frequencies, or number of times the invariant 0(H) occurs in
λ(G). Equation (1) is a useful necessity condition for H to be a little group.

Jarić (1982) noted the failure of the chain criterion to be sufficient for a Lie group. There
are two reasons for the lack of sufficiency. Even for finite groups equation (1) can fail to be
a sufficiency condition, because multiple group–subgroup coupling chains connecting H ′ and
H need special consideration. In addition, the little group is the maximal symmetry group as
its symmetry elements do not have to share the axes of the same elements in the parent group.
Every function in the basis set can have its own orientation relative to the supergroup axes. For
example, Cs is not a little group of 1−(O(3)) in spite of its conformity to this chain criterion.
The conformity is shown because the vector irrep 1− (O(3)) branches twice to 0 (Cs), once
more than in any of its supergroups C5h, C5v , C2h, C2v , C3v which are maximally connected
(i.e. which have no intervening group in the chain). However, these numbers reflect the fact
that all the components are tied to the same choice of rotation axes and mirror plane. When the
axis choice can be tailored individually to the basis functions their symmetry is seen to be much
higher than this, and in fact the little group of the functions in 1− (O3) is uniquely C∞v , the
intrinsic symmetry group of any polar vector. As another example, 2(SO (3)) reduces to more
invariants in the maximal subgroup C2 of D2 than it does in D2 itself; again, more invariants
appear at the C1 level. However, C1 and C2 are not little groups of 2(SO (3)). The (real and
orthogonal) basis functions Z2

1+ = xz, Z2
2+ = x2 − y2 in 2 (SO (3)) both have D2 symmetry,

but about different axes. In addition, their linear combination has no two-fold symmetry about
an axis in the same plane; yet it has D2 symmetry about oblique axes.

These examples show that the symmetries of all these functions cannot be tested at once
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within a global choice of axes by counting the increases in the number cλ of invariants as the
symmetry is lowered simply by removing group elements relative to those axes. An approach
is needed in which bases are allowed to be fully flexible so as to investigate the maximal
symmetry of any function.

2.2. Ihrig and Golubitsky criterion

Michel (1980) left the Parthian challenge: ‘we leave to the reader the study of the
representations 1−’. The challenge was taken up by Ihrig and Golubitsky (1984). Their
work is the most sophisticated to date and has been accepted by subsequent workers as the
definitive result.

Ihrig and Golubitsky (1984) observe: ‘unfortunately, Michel’s criterion for determining
when a subgroup is actually an isotropy subgroup (lemma 2) is incorrect as stated’, and ‘in
section 5 we give a correct version of this lemma (see lemma 5.3). Its proof is involved. It
seems likely that the condition we give is both necessary and sufficient though we have not
been able to prove this’. Our results show that their lemma 5.3 is necessary but not sufficient
for the group O(3), and not all their identifications are correct.

Initially, Ihrig and Golubitsky (1984) undertake to find the maximal little groups of O(3),
stating: ‘it is harder for a system to break more symmetries than less’. This, the so-called
maximality conjecture, has been part of the folklore of phase transition and gauge field theory
for 20 years. Its general applicability was disproved by Jarić (1983). Ihrig and Golubitsky
(1984) then embark on the task of finding all of the little groups of O(3), a task described as
‘a much more difficult calculation’.

Ihrig and Golubitsky’s (1984) central result, proposition 5.3, is another refinement of the
chain criterion. Rather than depending on an increase in the total subduction frequency, Ihrig
and Golubitsky propose that the following inequality must be satisfied in a H ′ ⊃ H if H is to
be a little group of λ (G):

cλ(H
′) − dim NG

(
H ′) < cλ(H) − dim NG

(
H,H ′) . (2)

In this the following definitions are used. As above, cV (G) (which Ihrig and Golubitsky write
as dim V G) is the subduction frequency for the group G in the vector V , namely the number
of occurrences of the identity irrep 0(G) in the set V . In the case of cλ V = Vλ, the set of basis
functions of the irrep λ (G).

The normalizer NG (H) of any H ⊂ G is the largest subgroup of G that contains H as
an invariant subgroup: NG (H) ≡ {g ∈ G | gHg−1 = H } (see Fraleigh 1994). For K ⊂ H ,
NG (K,H) ≡ {g ∈ G | gHg−1 ⊃ K}. For a group, dim G is the Lie group dimension of
the manifold of G, namely the number of infinitesimal generators in G. As we deal only with
subgroups of O(3), dim G = 3 if G = O(3) or SO(3), dim G = 1 if G is one of the infinite
axial groups, and dim G = 0 if G is a finite group. The normalizer of a finite subgroup of O(3)
is usually also a finite group and so of dimension zero. The exceptions are the normalizers
of any of the Abelian subgroups of O(3). Any subgroup of an Abelian group is an invariant
subgroup, so that the normalizer of any Abelian subgroup of O(3) will always contain C∞ and
will thus always be one-dimensional.

This refinement of the chain criterion by Ihrig and Golubitsky (1984), introducing
the dimensions of the normalizers, shows cognisance of the basic problems with the
Michel criterion, and is closer to a sufficiency condition. The differences are discussed in
sections 2.3, 5.2 and appendix A. We note here that the little groups of SO(3) generated by
their method mostly agree with Michel (1980), including the erroneous assignment of D2 in
l = 3; they disagree with Michel (1980) by assigning O and not T as a little group of l = 3;



6668 M J Linehan and G E Stedman

these changes are retrograde as erroneous. For positive parity irreps of O(3), their results are
completely incorrect; none of the groups they list are little groups. For negative parity irreps
in O(3) their results are not consistently presented. On the most favourable rationalization of
this problem, they are incorrect in assigning T as a little group in l = 3−, 4−. It follows that
equation (2) is not sufficient.

2.3. Massive chain criterion

We introduce now a modified criterion which we call the massive chain criterion; we find it to
be fully reliable as a sufficiency as well as necessity condition within subgroups of G = O(3).
This criterion states that H ⊂ G is a little group of an orthogonal irrep λ (G) if and only if for
each strictly larger and adjacent group H ′ (so that H ⊂ H ′ ⊂ · · · ⊂ G),

cλ(H
′) − f 0

λ

(
H ′) < cλ(H) − f 0

λ (H) . (3)

Here we call f 0
λ (H) the massless subduction frequency; it will be defined below. f 0

λ (H)

redeems the failure of earlier chain criteria to recognize adequately that the shape of a basis
function is independent of any O(3) rotation, and that the attendant freedom of its axis choice
has to be taken into account in determining whether it is an invariant with respect to any
potential little group H . Comparing equations (1)–(3), we note that the massless subduction
frequency f 0

λ (H) plays the role of Ihrig and Golubitsky’s correction term dim NG(H,H ′) in
refining the Michel criterion. We shall illustrate that f 0

λ (H ) can differ from dim NG(H,H ′)
by more than a constant even in subgroups of O(3).

Another practical difference with both Michel (1980) and with Ihrig and Golubitsky (1984)
is the emphasis on checking the criterion in each possible coupling chain H ′ ⊃ H . This is an
important check when there are multiple chains, to avoid H being credited with little group
character when that application should really be to some higher group. This explains at least
some of the explicit errors in earlier work.

LetVλ (H) be the subset of functions inVλ (a set of orthogonal functions forming a basis of
λ (G)) that are invariant under H . The basis is chosen to maximize the number of functions in
the subset Vλ (H). The dimension of Vλ is therefore cλ, the number of occurrences of 0 (H) in
λ. At this stage no transformations of G may be applied to demonstrate such an H -invariance;
the basis functions, once chosen, are fixed and elements of G that are retained in its subgroup
H have unchanged orientations.

We now define the massless subduction frequency by determining the extent to which the
members of Vλ(H) are in fact equivalent under transformations of G. We partition Vλ (H) into
two sets, a ‘massless’ subset V 0

λ (H) and a ‘massive’ subset V m
λ (H), so that each member of

V 0
λ (H) when transformed by a suitable element of G is identical to some member of V m

λ (H).
The partition is made so as to maximize the dimension f 0

λ (H) of V 0
λ (H) within the irrep λ. In

other words, G-equivalent functions in Vλ are separated, one being partitioned off to V 0
λ (H)

until no two members of V m
λ (H) are identical under a transformation of G. V m

λ (H) contains
one and only one of each of the shapes represented by the members of Vλ; V 0

λ (H) contains any
duplicate shapes (functions which are equivalent under G-transformation). This defines the
‘massless subduction frequency’ f 0

λ (H). The massive subduction frequency is the dimension
f m
λ (H) of V m

λ (H), and is therefore given by

f m
λ (H) = cλ − f 0

λ (H) . (4)

The terms ‘massless’ and ‘massive’ are chosen in analogy with Higgs theory (see, for
example, Weinberg 1996) where a unitarity transformation (the analogue of the G operations
above, and in particular to rotations for SO(3)) removes the basis functions of the gauge
group that correspond to massless particles. The analogy is particularly close when little
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groups are applied to spontaneous symmetry breaking. Only massive components contribute
to the homogeneous Hamiltonian. The massless components become important in the
inhomogeneous part of the Hamiltonian because they give rise to Goldstone modes, and the
number of Goldstone modes must equal the number of massless components.

With these definitions, equation (3) then gives

f m
λ (H ′) < f m

λ (H) . (5)

When this inequality holds, a new shape (characterized independently of its orientation) has
appeared, and because it is invariant under H and not under any supergroup H ′ its symmetry is
H . This is the condition for H to be a little group of λ (H). By construction, then, equation (3)
takes fully into account the complications in the subduction formula caused by the freedom of
axis choice.

We now search for an algorithm to calculate the massless subduction frequency f 0
λ (H) in

subgroups of G = O(3) and SO(3). First, the value of f 0
λ (H) is limited by the need to have

at least one massive function, f m
λ (H) � 1 within a finite subspace Vλ of dimension dim Vλ

(or |λ|). Hence f 0
λ (H) � dim Vλ − 1, which is 2l in the irrep lπ (O(3)). The next aspect is the

extent to which linearly independent functions can be generated from any basis function while
respecting H symmetries. The general rule for this pays particular attention to the degrees of
freedom of the group; linear independence is then possible because of the continuous value
of the possible rotation (Ihrig and Golubitsky 1984). There are three cases to consider. We
summarize the results here; illustrations of such points are discussed in the next section.

First, if there are no symmetry axes in H (i.e. for H = Ci or C1), all basis functions are
H -invariant; Vλ (H) = Vλ; any rotation of O(3) will carry any basis function into another H -
invariant function. Using the three generators of SO(3), three linearly independent functions
can be generated from any member of V m

λ (H) by rotation if the space is sufficiently big
(dim Vλ > 2), so that in these cases f 0

λ (H) = 3.
Second, for the groups H = O(3), SO(3), D∞h, D∞, C∞v , Yh, Y , Oh, O, Th, Td , T ,

Dnh, Dnd , Dn, Cnv there are at least two non-collinear symmetry axes. Hence any member
of Vλ (H), being invariant under H , must also have a fixed orientation, and must be uniquely
aligned with these two axes. No continuous rotational degrees of freedom exist to preserve
the H -invariance and yet secure linear independence of any basis function, and so no massless
basis functions are possible: f 0

λ (H) = 0.
Third, if all the symmetry axes of H are the same, as for H = C∞h, C∞, Cnh, Cni ,

Cn, Sn, Cs at most one generator of O(3) can act to change the orientation of any function
nontrivially. In the case of the Abelian groups H = C∞h, C∞ dim Vλ = 1, there is no
possibility of a massless function and even this rotation is powerless to make the original basis
function exp imφ linearly independent of its rotated form; f 0

λ (H) = 0 in these groups. In the
remaining groups (Cnh, Cni , Cn, Sn, Cs) no such simplification arises and, corresponding to
the number of generators, f 0

λ (H) = 1 if dim Vλ > 1.
We now enshrine this argument and its conclusions in a formula. The number of degrees

of freedom of the group H , the Lie dimension of the normalizer group of H , is defined as
dim NG (H); it gives information on the number of independent H -invariant basis functions
which might be obtained from a member of the massive subset by an equal number of types
of rotations (Ihrig and Golubitsky 1984). Because of the above-mentioned problem with C∞
and C∞h (and this is one point of departure from Ihrig and Golubitsky (1984) in this paper),
we should subtract from dim NG (H) the Lie dimension of H , dim H ; this denotes the one
situation in which one degree of freedom fails to generate an independent basis function (the
third case above). That this is the only category of exceptional cases is confirmed by inspection,
and that confirmation (together with the provision of a number of illustrations) is the function
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of sections 3–5 in the argument of this paper. Taking into account the dimensional restriction
discussed above, we may then define

f̄λ (H) = dim NG (H) − dim H f 0
λ (H) = min

[
(dim Vλ − 1) , f̄λ (H)

]
. (6)

This completes the definition of the massive chain criterion. The results of its application are
tabulated in appendix B.

Note that NG (H) ⊇ H , so that dim NG (H) − dim H � 0. The number of massless
components of an irrep that subduces some group is not just the number of degrees of freedom
in orienting the basis functions, but this quantity minus the number of generators in the group.
The term (dim Vλ − 1) is important only for small irreps, with |λ| � 3, which are easily dealt
with by inspection.

For |λ| > 3, the Ihrig and Golubitsky (1984) criterion, equation (2), and the massive chain
criterion of equation (3 ) agree if

dim NG(H,H ′) = dim NG (H) + dim H ′ − dim H. (7)

In many cases this holds true. Ihrig and Golubitsky consider the case of H = Cn and H ′ = C∞
in some detail and find that dim NG(H,H ′) = dim NG (H). Our above-mentioned point of
departure reflects the fact that dim C∞ = 1 although dim Cn = 0, violating equation (7)
and making the increase in the number of massless components in going from C∞ to Cn

equal to one, not zero. This illustrates the insufficiency of the criterion of equation (2). The
difference between f 0

λ (C∞) and f 0
λ (Cn) explains why we use a stronger criterion than do Ihrig

and Golubitsky (1984). The above analysis certainly confirms that Ihrig and Golubitsky’s
proposition 5.3 is a necessity condition within the group O(3), and as such is a stronger
condition than that of Michel (1980).

Although the massive chain criterion only provides a slightly stronger inequality than that
of Ihrig and Golubitsky’s work for some cases in respect of O(3), it is unwise to conclude
that these two different inequalities will provide much the same results when applied to more
complicated Lie groups. Indeed, that these two different inequalities provide similar results
for O(3) can be understood through consideration of the concept of the normalizer group.
Since the normalizer of any group with respect to O(3) is, by definition, a subgroup of O(3),
it follows that its dimension can only be three (if it is O(3) or SO(3)), one (if it is one of
the infinite axial groups) or zero (if it is any finite group). The dimension of a Lie group is
identified in all of this work with the dimension of its group manifold. If one considered a
group with a larger manifold (for example the group SU(5), which is 24-dimensional) then it
seems likely that discrepancies could become much more significant.

This analysis explains why, when inequality 5.3 of Ihrig and Golubitsky (1984) is so
similar to equation (5), these authors identify some little groups incorrectly. The case of the
group D2 for l = 3(SO(3)) is instructive; this case is also incorrectly identified as a little
group by Michel (1980). Previous authors would not have found this to be a little group if
they had deployed the correct form of the chain criterion for dealing with multiple inequivalent
group chains, namely, if they had required the criterion to hold for each possible H ′ such that
H ′ ⊃ H .

Finally, we note that Ihrig and Golubitsky’s (1984) results (corollaries 6.7 and 6.9) and
our results (section 6) for little groups of O(3) for l � 30 are in complete agreement.

3. The infinite axial groups

We now determine the little groups of all irreps of C∞, C∞h, C∞v , D∞ and D∞h. While some
of these are well known, this is a complete list and the results give a useful illustration of the
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concept of massless functions, a vital step in the recognition of a more general chain criterion.
One example of the physical interest of these groups is that in nematic liquid crystals we start
not from O(3) but from D∞ or D∞h, since it is the reduction of this symmetry which may be
the decisive step.

The group C∞, isomorphic to the group U(1), has one-dimensional irreps; for the irrep
labelled m the basis function is the complex number of unit modulus: m → eimφ . Inspection
or Michel’s chain criterion (equation 1) show that the little groups are C∞ for m = 0 and C|m|
for all other m.

In C∞h also the irreps are one-dimensional. To apply the chain criterion we need the
branchings C∞h ⊃ Cnh, Cni (n odd), C∞; Cnh (n even) ⊃ Cn, Ci , Cs ; Cnh (n odd) ⊃ Cn,
Cs ; Cni ⊃ Cn, Ci;Cn ⊃ C1, the lower-order cases of which are tabulated in appendix B. The
little groups (with the relevant irreps in brackets) are as follows: C∞h(0+), C∞(0−), Ci(1+),
Cs(1−); Cnh(n

+) and Cn(n
−) for n even, n � 2; Cni(n

+) and Cnh(n
−) for n odd, n � 3.

The one-dimensional irreps of the groups C∞v , D∞ and D∞h may be dealt with similarly,
generalizing the tabulated branchings to C∞v ⊃ Cnv , C∞; Cnv ⊃ Cn, Cs . These groups
all have two-dimensional representations, and the Michel chain criterion is not sufficient.
Consider the first two-dimensional irrep 1 of C∞v . The only non-zero subduction frequencies
are c1(Cs) = 1 and c1(C1) = 2.

Cs is clearly a little group for the irrep 1, because Cs is the first group for which the
massive subduction frequency is non-zero. If the dimension of the representation vector is one,
it cannot have any massless components. Since there exists only a single axis of symmetry
(the direction perpendicular to the plane) and no infinitesimal generators, any representation
vector that subduces the identity of Cs and that has Cs as its little group must have exactly
one massless component. Now consider the irrep spanned by {Z1−

m }, where Zl
m± is a tesseral

harmonic. This subduces the group C∞v once (which as we have seen is its only little group).
The subduction frequency of the group Cnv remains unity for all n > 1. The group C1v is the
groupCs and its identity representation is subduced twice by the irrepZ1−

m . However, according
to the new rules, this is not a new little group because the massive subduction frequency must
be the ordinary subduction frequency minus one (for the one massless component). Since the
massive subduction frequency remains equal to one, the shape of the representation function
and hence its little group cannot have changed.

However, C1 is not so clear. The basis functions of λ = 1, the tesseral harmonics Zl
1+

and Zl
1−, transform into each other under rotations, and a linear combination of them has

the same symmetry as either of the functions individually. It follows that there is only one
little group for the irrep 1 and that its most general representation vector is two-dimensional.
The same argument applies to all irreps of this group for m > 0; a linear combination of the
basis functions sin mφ and cosmφ is another sinusoidal function with the same period. The
little groups for each irrep, stated in brackets with the dimension of the basis functions, are:
C∞v (0, 1); Cs (1, 2); Cnv (n, 2).

A similar approach suffices in the cases of the two-dimensional irreps of D∞ and D∞h,
and inspection of either basis function gives each little group. For D∞ the little groups are
D∞ (A1, 1), C∞ (A2, 2), C2 (E1, 2), Dn (En, 2). For D∞h, we have D∞h(A

+
1, 1), D∞(A−

1 , 1),
C∞h(A

+
2, 1), C∞v(A

−
2 , 1); C2h(E

±
1 , 2), Dnh(E

+
n , 2) and Dnd(E

−
n , 2) for n even; Dnd(E

+
n , 2)

and Dnh(E
−
n , 2) for n odd.

4. Inspection of the O(3) little group analysis

We claim the massive chain criterion to give the full solution of the problem. However, we aim
in this and the next section to illustrate and confirm its conclusions by inspection of the results.
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Ultimately establishing the sufficiency of a chain condition involves the explicit demonstration
of a function within the irrep space with the symmetry of the candidate little group. This is a
safeguard against producing yet another abstract argument in favour of yet another inadequate
criterion. We might first inspect the symmetry elements of any function with respect to a global
axis choice, then convert the results of this inspection into a sufficiency condition by showing
that no rotation of axes will reveal new symmetry elements.

In the following, we use an inspection-based approach to examine the individual functions
{|λl〉 | l ∈ λ} of the chosen basis for the irrep space λ. Their maximal symmetries will be called
the basis little groups. For G = O(3), λ = l π , and we choose as basis the tesseral harmonics
|λl〉 → ηZl

m± (θ, φ) (suppressing the arguments for simplicity), m = 0, 1, 2, . . . , l with a
scalar or pseudoscalar factor η to adjust the parity from polar to axial respectively (scalar if
π = (−1)l , pseudoscalar otherwise). Inspection of the symmetries and identification of the
little group of each such function is particularly straightforward, the best choice of axes being
conspicuous for such fundamental functions. This nomenclature cannot avoid the arbitrariness
of the basis choice. However, an optimal or even near-optimal choice of basis (in our case the
tesseral harmonics) enables the identification of a maximal number of little groups at the basis
level, leaving fewer to be found in the later steps.

We must consider other little groups corresponding to the symmetries of all possible linear
combinations

∑
l al|λl〉 of the basis vectors {|λl〉 | l ∈ λ}. The literature is ambivalent about

the necessity of this, but we believe that any linear combination is of as much interest in our
applications as are the basis functions. General linear combinations are those for which the
same little group applies to functions for a continuous range of the coefficients {al} of the
basis functions {|λl〉}. The consideration of general linear combinations is a trivial problem
for vectors; all linear combinations give another vector of the same parity and so the same little
group. Determining the symmetry of a general linear combination is nontrivial, interesting
and analytically solvable for second rank tensors 2(SO(3)), i.e. the l = 2 irrep of SO(3) (and
similarly forO(3)). Here the existence of higher symmetries for oblique axes is very important.
For higher irreps l of O(3), we proceed by a combination of inspection with guidance from
the chain criterion and the group-chain pedigree of any invariant function.

Suppose that two basis functions |λl1〉, |λl2〉 with little groups H1, H2 are linearly
combined. The linear combination obviously includes all joint symmetries, and possibly no
others. Hence their common symmetry elements will make H12 = H1 ∩ H2 a candidate
little group. (The intersection ∩ needs to be performed recognizing that the axes of H1

and H2 may not be parallel, this being already ascertained in the step of discovering the
basis little groups.) Hence the invariant count in H12, a subgroup of H1 and of H2, satisfies
cλ (H12) � cλ (H1) + cλ (H2). This relation follows from the linear independence of the basis
functions |λl1〉, |λl2〉 which demonstrate the basis little group status of H1 and H2, because
each of these increments the invariant count. As little groups, H1, H2 have at least one invariant
each, so that each term in this inequality is nonzero. If, for at least one of the group–subgroup
paths H1 ⊃ H12, H2 ⊃ H12 any intermediate group H ′, if it exists, has no invariants extra
to those of the higher group H1 or H2, the invariant count cλ (H12) is greater than that of an
adjacent higher group and the Michel chain criterion is obeyed. However, before one can
conclude that H12 is a little group, it needs to be verified that a linear combination of basis
functions has no further symmetries which are generated by the linear combination, and that
its symmetries are exhibited only by a suitable axis rotation.

As an example, consider linear combinations in l = 2. Z2
2− ∝ xy is a D2 invariant in the

chainO(3)−Oh−O−T −D2 (forcing theC ′
2 axis through the cube edge) whileZ2

2+ ∝ x2−y2

is a D2 invariant in the chain O(3)−Oh−D4h−D4 −D2 (forcing the C ′
2 axis to a face centre).

In this way the possibilities for extra little groups become denumerable, as in the chain criterion
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analysis, and can be given geometric character. Some of the subtler points in implementing this
are exemplified by Reid and Butler (1982). The program RACAH was used to confirm the sym-
metry of some more complicated basis functions. While this approach was restricted as above to
a subset of axis choices and so still has a ‘basis function’ flavour, the axis choices are very much
more numerous and apposite, and the results are adequate in their variety to cover all the pos-
sible little groups revealed by the chain criterion. For example, neither inspection of common
symmetry elements nor the program RACAH captures the retention of D2 symmetry in a gen-
eral linear combination ofZ2

2+ andZ2
2−, which is easily revealed by a suitable rotation about the

z axis; however, either of these functions suffices to illustrate the little group character of D2 in
a way which is conveniently covered by its symmetry elements under the standard axis choice.

Special linear combinations may exist in which only a unique set of coefficients will give
the symmetry in question. The chain criterion of equation (1) is a reliable indicator since the
requisite linear combination will be unique to the group in question and the invariant count
will not be reflected in a supergroup. In the tesseral harmonic basis we use, such special
combinations may be expected at rank 4 (for a cubic function necessarily involving the special
linear combination of equation (10)).

Ci and C1 might be expected to be little groups in all irreps of O(3), for positive and
negative parity respectively, as the probable symmetries (i.e. no rotational symmetry) of a
fully general linear combination of the basis functions. As noted below, this argument does
not work in the cases l = 1, 2. We now give a general approach to understanding this, and the
allied results for l � 3; and not only this, but a general attack on the problem of dealing with
the variation and uncertainty of the axis choice that best reveals the symmetry of each linear
combination.

If any linear combination
∑

m± am±Zl
m± is invariant under a general rotation operator

Oφ (n) with representation matrix Ol
mm′ (φ,n), where φ has an arbitrary axis n,

Ol
mm′ (φ,n) am′ = am. (8)

Hence |Ol (φ,n) − I| = 0, and because under a rotation of n to the z axis, Ol (φ,n) − I =
R(Ol (φ, z) − I)R†, the determinant of a matrix product is the product of the determinants,
|Ol (φ, z) − I| = 0. Conversely, any rotation operator Oφ (z) (and therefore any Oφ (n))
satisfies |Oφ (n)− I| = 0 in the basis Zl

m, since it leaves Zl
0 unchanged. We ask now that the

condition for a particular linear combination be invariant under any such rotation. A minimum
condition is that both φ and n have to be chosen appropriately to the choice of {am}. To
explore this, for convenience we switch temporarily to a spherical harmonic basis, in which
Ol

mm′ (φ, z) = δmm′ exp (imφ) and we use the corresponding component labels ±m. With this
substitution equation (8), while making no demand of a0, requires the following conditions
on the possible linear combinations which are invariant under Oφ . First a1 = a−1 = 0; it is
not possible for the factor exp (±iφ)− 1 to vanish for nontrivial φ. This vanishing of a±1 can
always be achieved by a judicious choice of the two Euler angles (rotating the function amZ

l
m)

and so defining the direction of the axis n. Since for l = 1 this concludes the requirements,
and is always possible for any φ given an appropriate axis n, a general linear combination of
l = 1 functions always has at least C∞ symmetry. This line of argument may be extended to
l � 2 (see appendix C), but the reliability of the massive chain criterion (section 2.3) reduces
the importance of this to a check.

5. Lower-order little groups of O(3) and SO(3)

We distinguish polar (true) and axial tensors: polar tensors of rank l reflect ‘naturally’, having
parity π = πl ≡ (−1)l , whereas axial tensors of that rank have parity −πl . The basis functions
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Z 0

0 Z 1

0 Z 1

1+ Z 1

1-

O(3) C 8 h v( )

Figure 1. Basis functions of l = 0, 1 (O(3)). Some of the relevant little groups are indicated
below, the bracketed indices indicating the changes between positive and negative parity in O(3)
and between O(3) and SO(3).

under consideration, with the relevant basis little groups as established by inspection, are
depicted in the various figures; little groups for positive parity are on the left, and for negative
parity on the right, in each figure.

5.1. l = 0, 1

For l = 0 we have trivially the basis function η and the following little groups.

Positive parity: 0+ (polar: invariant). η is a scalar, and the little group is the full group O(3).

Negative parity; 0− (axial, pseudoscalar). η is a pseudoscalar, and the little group is the full
group SO(3).

For l = 1, figure 1 shows the angular dependence of the basis functions η{Z1
m±} (the labels

m± denote the full set 0, 1±, . . . , l± in general).

Positive parity 1+ (pseudovector, axial). η is a pseudoscalar. By inspection the basis little
group is C∞h. (This preserves an axial vector. Under σh = σxy , a reflection in the xy plane
normal to the C∞ axis, a plain 1− spherical harmonic reverses; the pseudoscalar factor also
reverses and restores the sign; a magnetic field is unchanged by a reflection in a plane to which
it is perpendicular.)

Negative parity 1− (natural, polar). η is a scalar. The basis little group is C∞v which
preserves a polar vector in the reflection plane.

For either parity, any linear combination can only give another such vector, with the same
symmetry. Note that Ci is not a little group of 1+, or C1 of 1−; the symmetry of a general linear
combination of l = 1 functions is always at least C∞. This illustrates that the chain criterion
fails as a necessity condition, even for finite groups, since (in the case of positive parity for
example) the value (3) of c1 (Ci) is greater than for any supergroup (appendix B). A proof that
C∞ is the minimum rotational symmetry is given in section 4.

We note that equations (5) and (6) yield these results; the dim Vλ − 1 restriction requires
f 0 < 3. According to the above f 0 = 0 for D∞h, C∞h, C∞v , and according to appendix 2
the nonzero subduction frequencies are c1+(C∞h) = 1 = c1− (C∞v).
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Z 2Z 2

0 Z 2

1+ Z 2

1- 2-Z 2

2+

D 8 ( )h  2 ( )d h

Figure 2. Basis functions of l = 2 (O(3)) as for figure 1.

5.2. l = 2

The case of l = 2 is nontrivial. However, it is familiar in the form of the representations found
in the inertia tensor of rigid bodies in classical mechanics. Such tensors contain both the 0
and 2 irreps of SO(3), and are isomorphic to a real symmetric traceless 3 × 3 matrix. Figure 2
shows the basis functions η{Z2

m±}. The functions η{Z2
m±|m > 0} are equal modulo a rotation.

Positive parity 2+ (natural, polar). η is a scalar. The maximal symmetries of ηZ2
0 and

η{Z2
m±|m > 0} give D∞h and D2h, respectively. The axes of the former are standard (z for

C∞, x say for C2 in D∞); the axes of the latter are oblique and m-dependent. This is a dramatic
example as to why merely working out intersections of groups is not reliable in analysing linear
combinations; the D2 axes of the functions {Z2

m±|m > 0} are all different. This also illustrates
why Ci is not necessarily a little group of l+.

Negative parity 2− (pseudotensor, axial). η is a pseudoscalar. The maximal symmetries of
ηZ2

0 and {ηZ2
m±|m > 0} are D∞ and D2d , respectively. As for the case of positive parity,

the axes of the former are standard (z for C∞, x say for C2 in D∞); the axes of the latter are
oblique and m-dependent.

The general linear combination of {Z2
m±}, a(2z2−x2−y2)+2bxy+2cyz+2dzx+e(x2−y2)

can be written (x, y, z)M(x, y, z)T where the matrix M and its eigenvector matrix R are

M =
(
e − a b d

b −e − a c

d c 2a

)
R =

(
w11 w21 w31

w12 w22 w32

w13 w23 w33

)
. (9)

Since M is symmetric and real (Hermitian), its eigenvalues λa are real and its eigenvectors wa

are orthogonal in the sense w∗
a ·wb = 0. Hence the eigenvector matrix R where wab is the bth

component of wa is unitary and also diagonalizes M : RMR† = diag ({λa}). Since the matrix
elements (as well as the eigenvalues) are real, the basis vectors can be chosen to be real, and R

is orthogonal and so a rotation matrix. This defines a basis change under which such a linear
combination can be reduced to a linear combination of the diagonal terms x2, y2 and z2, i.e.
the functions Z2

0 , Z2
2+, whose combined rotational symmetry is D2. Hence D2 is the minimal

symmetry of a general linear combination at l = 2, and no new little groups arise.
Another way of understanding this result is to note that symmetric functions of second rank

must be linear combinations of x2, xy, y2, xz, yz, z2. Of these the invariant x2 + y2 + z2 ∼ 0
can be removed, leaving 5 rank two functions, according to the symmetric square of the vector
irrep in SO(3): 1⊗{2} = 2 ⊕ 0. Three coefficients (of xy, yz, zx say) can be chosen to be
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zero by appropriate choice of a rotation (the three Euler angles). This leaves two functions,
x2 − y2 ∼ Z2

2+ and 3z2 − r2 ∼ Z2
0 .

Once again this illustrates the failure of the Michel chain criterion as a necessity condition,
since (in the case of positive parity for example) the value (5) of c2 (Ci) is greater than for any
supergroup (see appendix B). Another proof that D2h (for positive parity) and D2 (for negative
parity) is the minimum symmetry is given in section 4.

5.3. l = 3

It was proved in section 4 that, for l � 3, a truly general linear combination cannot have
any rotational symmetry element. Hence Ci and C1 are little groups for positive and negative
parity, respectively.

Positive parity 3+ (pseudotensor, axial). When we apply the massive chain criterion (using
the group branchings and subduction frequencies of appendix B) for l = 3+, the only groups for
which the subduction frequency increases also exhibit an increase in the massive subduction
frequency. These groups are C∞h, Th, D3d , C3i , C2h and Ci .

These results are the same as those of Michel (1980, table A.2) except that they do not
include the group D2h. Ihrig and Golubitsky (1984) also find the group D2h in this case. The
reason thatD2h is not included here is that it is a subgroup ofTh, and the subduction frequency is
the same (1) for both these groups. This error probably arose because the subduction frequency
does increase in the chain D∞h ⊃ Dnh ⊃ D2h because the subduction frequency for all such
supergroups of D2h is zero. This illustrates the need to test the chain criterion for all possible
supergroups.

Negative parity 3− (natural, polar). Application of the massive chain criterion to the case
of the seven-dimensional irrep of O(3) with negative parity yields the little groups: C∞v ,
Td , D3h, C3v , C2v , Cs and C1. There are other groups for which the subduction frequency
increases. However, in all of these cases the massive subduction frequency is the same as that
of a supergroup. For example, the group S4 has a subduction frequency of 2, but a massive
subduction frequency of 1 in common with its supergroup Td . Detailed inspection generates
the same results as those above. The detailed inspection method in 3− needs care over whether
the group C2 should be included in the set of little groups. Any linear combination of Z3

0, Z3
2±

has C2v symmetry, because this group is the intersection of their symmetry elements. But Z3
3+

and Z3
2− have only C2 for a common symmetry group, suggesting that C2 is a new little group

for 3−. In fact, an arbitrary linear combination of these functions has the full C2v symmetry.
Such a linear combination can be generated from another that obviously has C2v symmetry,
a
(
Z3

0 + Z3
2

)
+ bZ3

−2, when rotated by the transformation: x → −z, y → y, z → x. This also
shows that the choice of the two vectors with C2h symmetry for 3+ simply amounts to a choice
of coordinate system.

The basis functions connected with these little groups in 3+, 3− are listed in appendix C,
because of their interest in calculation of property tensors. Figure 3 gives the form of the full
basis for l = 3, and the tables of section 6 indicate the symmetries of these functions.

5.4. l = 4

As for l = 3, Ci and C1 are general little groups for positive and negative parity, respectively.
We inspect the symmetries of the basis functions η{Z4

m±} (figure 5, table B.3) for the basis
little groups.
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Figure 3. Basis functions of l = 3 (O(3)) as for figure 1.

Positive parity 4+. The basis little groups areD∞h,C2h,D2h,D3d ,D4h (for |m| = 0, 1, 2, 3, 4,
respectively).

Negative parity 4−. The basis little groups are D∞, C2v , D2d , D3h, D4d (for |m| =
0, 1, 2, 3, 4, respectively).

We form a histogram from the relevant column (4±) of table B.1 of the numbers of
invariants, and inspect the points of increase as the symmetry is lowered. For positive parity
(lπ = 3+), D∞h, Oh have 1 invariant. D4h, D3d have 2 invariants. D2h, C3i , C4h have
3 invariants. C2h has 5 invariants. Ci has 7 invariants. This accounts for the basis and general
little groups, and also gives the candidates Oh, C3i and C4h.

Oh is a little group, an example of such an invariant being the special combination

ζ = (√
7Z4

0 +
√

5Z4
4+

)
/2

√
3. (10)

Such results (see appendix C for others) are most easily obtained from RACAH.
C3i possesses 3 invariants; it is a subgroup of 2 basis little groups, D∞h and D3d , giving

two invariants from Z4
0 and Z4

3+. The third invariant therefore has to be sought elsewhere.
Table B.3 shows that the only possible additional function is Z4

3−. However, its inclusion with
Z4

0 and Z4
3+ can be frustrated by a rotation about z, and the combination of Z4

0 with either
Z4

3+ or Z4
3− has a higher symmetry. Hence C3i is not a little group. (If we seek it from ζ of

equation (10), on the grounds that C3i is also a subgroup of Oh, we then have to rotate ζ so
that the C3 axis is common, and the basis reduces to the set Z4

0 , Z4
3+, Z4

3−.)
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This leaves C4h. This is a subgroup of D∞h and Oh (whose invariants, involving as they
do different linear combinations of Z4

0 and Z4
4+, are linearly independent), and has a third

invariant. The four-fold axis shows (from table B.3) that this can only arise from another
linear combination of Z4

0 and Z4
4±, but this can be frustrated by a rotation about z. Hence C4h

is not a little group.
Hence Oh is the only general little group for 4+.
For negative parity 4−(axial), D∞, O, D2d and D3h have 1 invariant; D4, D3, S4, C3h and

C2v have 2 invariants; D2, C3 and C4 have 3 invariants; Cs has 4 invariants; C2 has 5 invariants,
and C1 has 7 invariants. This confirms the little group status of D∞, C2v , D2d , D3h, D4d and
C1; this leaves O, D4, D3, D2, S4, C3h, C4, C3, C2, Cs to be discussed. We seek invariant
functions for each of these groups from the set

{
Z4

0, Z
4
2±, Z

4
3±, Z

4
4±
}

as before.
O is a little group from equation (10).
D4 and C4 both require a four-fold axis, and so must be found in the subset

{
Z4

0, Z
4
4±
}
.

A z rotation eliminates, say, Z4
4−, and from table B.3 the remaining joint symmetry includes a

two-fold operation and so is indeed D4, which becomes a little group. Since this symmetry is
higher than C4, the latter is not a little group; its candidacy assumed the necessity of admixing
Z4

4−. A similar argument is true for S4, the claim for whose candidacy also requires both ofZ4
4±.

D3, C3h and C3 all require a three-fold axis, and so must be found in the subset
{
Z4

0, Z
4
3±
}
.

A z rotation eliminates, say, Z4
3−, and from table B.3 the remaining joint symmetry elements,

C3z, C2y and C2e give D3 as the only little group. In particular, no reflection is possible. The
appearance of C3h from the chain criterion is understandable on the basis of the combination
Z4

3±, itself neutralized by a z rotation, and similarly C3 on the basis of combining Z4
0 , Z4

3±.
The subset

{
Z4

0, Z
4
2+

}
similarly reveals D2 as a little group, and the elimination of Z4

2− by
rotation also eliminates C2.

This leaves Cs , whose candidacy is explained by noting that the linear combination of{
Z4

2−, Z
4
3−, Z

4
4−
}

has from table B.3 only the reflection symmetry σxz. One of these three
functions can be eliminated by z rotation. If we choose this to be Z4

3−, not only is σxz common
to both the remaining functions, but C2z is also present. Hence Cs is not a little group.

Hence O, D4, D3 and D2 are general little groups for 4−.

6. Little groups for any l

The subgroups of O(3) and their group–subgroup relations are well known; in seeking a
general solution we require analytical formulae for the subduction frequencies of these various
groups. First, consider the tetrahedral group T . From the Weyl trace formula from section 2.2
and noting from its character table that T contains the following elements (with multiplicities
in brackets): C1(1), C3(4), C2

3 (4), C2(3) the subduction frequency is given by

cλ (T ) = 1

12

(
sin
((
l + 1

2

)
2π
)

sin (π)
+ 8

sin
((
l + 1

2

)
2π
3

)
sin
(
π
3

) + 3
sin
((
l + 1

2

)
π
)

sin
(
π
2

)
)

= 1

12
(2l + 1) +

4

9

√
3
(

sin
π

3
(2l + 1)

)
+

1

4

(
sin

π

2
(2l + 1)

)
≡ 2

[
l

3

]
+

[
l

2

]
− l + 1

where the last equivalence follows for l being an integer. The square bracket denotes the floor
function, namely the largest integer less than or equal to the argument. This result also applies
to the group Th for positive parity irreps. The same procedure allows us to determine formulae
for other subduction frequencies such as Y and O (also in SO(3); these hold also for O(3) for
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either parity) and Yh and Oh (for positive parity), also a formula can be obtained for Td (for
negative parity) as given in tables B.1 and B.2. For the moment we concentrate on SO(3) and
table B.1.

Ihrig and Golubitsky (1984) augment the trace formula and correctly generate subduction
frequencies for groups such as Cn for arbitrary values of n. For this presentation we proceed
partly via inspection as deployed initially by Ihrig and Golubitsky in the groups C∞ and Cn

and then apply the massive chain criterion. The dimension of the fixed point set must be unity
for C∞ because there is just one tesseral harmonic basis function, Zl

0, that is invariant under
infinitesimal rotations about an axis. From our earlier discussion the subduction frequency for
C∞ must be equal to the massive subduction frequency (i.e. unity). Furthermore, as Ihrig and
Golubitsky also observe, the fixed point set for the group Cn will include all basis functions
where n divides |m|. It follows that the fixed point set will always include the basis function
m = 0 and twice (one for +m and one for −m) the floor of l divided by n. The case of C1

has already been dealt with, the conclusion being that it is a little group for all l � 3 with a
subduction frequency of 2l + 1.

The subduction frequency ofD∞ for all odd l must equal zero as only even l basis functions
contain even powers of cos θ (θ being the polar variable) and so only they have the two-fold
symmetry perpendicular to the infinity-fold axis found in the group D∞. Thus even l irreps
subduce the identity representation of D∞ once. The only other subgroups of SO(3) are the
groups Dn for all n > 1. If l is even the fixed point set obviously includes m = 0 (little group
D∞). It is clear from the case of Cn that basis functions for which m is an integer multiple of n
will contribute to the fixed point set ofDn. However, they will only contribute to the fixed point
set in such a way that the two-fold axes perpendicular to the n-fold axis coincide for all basis
functions. This means that only one basis function for a given |m| will contribute to the fixed
point set. For even l and even n one may choose all appropriate m to be positive. For even l and
odd n one may choose odd m negative and even m positive. For odd l one must exclude m = 0
(little group C∞). If n is even one may take all relevant m to be negative. When n is odd one
may choose the oddm positive and the evenm negative. The preceding results with the massive
chain criterion (section 2.3) produce the complete set of results for the little groups of SO(3)
in table B.1. The basis functions for the groups T , O and Y are not as simply stated; only
particular combinations of the tesseral harmonic basis functions have the requisite symmetry.
They may be determined for any particular case by using the program RACAH (appendix C).
In this sense group branching arguments fully accommodate the effects of axis freedom.

We now consider little groups of irreps of O(3). The results for positive parity irreps
are trivially derived from the little groups of SO(3) (see caption to table B.2); the subduction
frequencies and representation vectors are exactly the same for these irreps. The case of
negative parity may be attacked in exactly the same way as that of positive parity. The only
caution applies to finding the general vectors for cases such asDn where one must again be sure
that the two-fold axes of different basis functions coincide. Also, one must be sure that basis
functions that are included in the fixed point set do actually possess the requisite symmetry.
For example, the group D4d does not contain D2d ; the supergroups of Dnd are Dpnd where p

is any odd positive integer. The cases of Dnh, Cnh and Sn are similar. The results for l > 0 are
given in table B.2. In our choice of basis we follow the convention (see section 5.3) in which
the massless components that are eliminated are those with m = 1± and one of the smallest
|m| > 1 possible where necessary (often m = 2−).

The group Oh is maximally connected to O(3): there are no subgroups of O(3) that are
supergroups of Oh. It follows that Oh will be a little group for any irrep that subduces its
identity more than zero times (except the identity irrep lπ = 0+). The same is true of the group
Yh. In the case of the groups O, Y and Td one may note that they are only connected to O(3)
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via inversion supergroups. It follows that, since these non-inversion groups can only be little
groups of negative parity irreps and since inversion groups are always subduced zero times by
negative parity irreps, then they will be little groups for any negative parity irrep lπ , l > 0 for
which cλ > 0. Since the subduction frequency is partly a periodic function and partly a linear
function, the largest value of l for which the subduction frequency could be zero is obtained
by comparing the linear part to the largest negative value generated by the periodic part. This
gives the little groups in the first 5 rows of table B.2.

The cases of Th for positive parity and T for negative parity require a further observation.
Suppose for some irrep of a group G there exist at least two little groups: A and B. Further,
suppose thatA andB are not group–subgroup related. It follows that at least one of the massive
components of the most general representation vector with little groupAmust be different from
that with little group B. The representation vector that subduces the identity representation of
any subgroup ofAmust contain all of the components of the representation vector that subduces
the identity of A. The same is true for any subgroup of B. Now consider a group C that is a
subgroup of both A and B. It follows immediately that the massive subduction frequency of C
must be strictly greater than that of either A or B (whichever is the larger). Hence C must also
be a little group ofG for the irrep under consideration. This means that both Th (supergroups Yh

and Oh) and T (supergroups Y , O and Td ) must be little groups for all lπ (respectively positive
and negative parity) greater than or equal to 30. Since the subduction frequencies given above
must be the massive subduction frequencies for these groups (which have non-collinear axes)
it is a simple matter to apply the massive chain criterion for all l less than 30. This procedure
determines that table B.2 gives the only irreps for which Th and T are little groups.
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Appendix A. Comparisons with earlier work and chain criteria

We give here some details of where previous work differs from this paper, and a simple example
of the use of subduction.

Boccara (1973) observes that the representation l+ (for odd l) subduces the identity of C∞.
This is true, butC∞ is not the relevant little group as claimed. Boccara states: ‘pseudo-tensorial
order parameters cannot be used to characterise phases with unproper symmetry elements’.
One counterexample is given by the pseudotensorial irrep 1+ of O(3) (the symmetry of the
magnetic field) which contains the little group C∞h and so an improper element (the mirror
reflection σh). Indeed, the irreducible Cartesian tensor manifestation of all irreps l+ will
be pseudotensorial for all odd l. If an irrep transforms as the identity (+) representation
of the inversion group, its little group must contain the inversion, an improper symmetry
element. Many of the pseudotensorial irreps that have negative parity have little groups that
contain reflection or rotation–reflection elements. Boccara also neglects all of the octahedral,
tetrahedral and icosahedral groups, and we note that, contrary to Boccara, 3− ↓ 0 (D2).

Ihrig and Golubitsky (1984) use a group notation which is translated into the Schönflies
notation by: O(2) → D∞, O(2)− → C∞v , I → Y , O− → Td , Dz

n → Cnv , Zn → Cn,
1 → C1; Dd

2n → Dnd when n is even and Dd
2n → Dnh when n is odd; Dd

2 → C2v , Z−
2n → S2n

when n is even and Z−
2n → Cnh when n is odd (Z−

2 → Cs); the inversion group corresponding
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to the rotation group G is K ⊕ G. In SO(3), Ihrig and Golubitsky (1984) agree with Michel
(1980) except for the seven-dimensional irrep: l = 3. Here, Ihrig erroneously finds O where
Michel (1980) correctly finds T . In common with Michel (1980) Ihrig and Golubitsky (1984)
include (erroneously, as we show) the group D2 as a little group for l = 3. For rotation–
reflection groups, a fundamental problem is that Ihrig and Golubitsky do not specify the parity
of the O(3) irreps under discussion. In the case of positive parity, none of the little groups are
correctly identified. Entries in their table B.2 are inconsistent with their theorem 6.8 (Ihrig and
Golubitsky 1984). For example, in their table B.2 the groups listed include D3h (for lπ = 3−)
and D5h (for lπ = 5−). Their theorem 6.8 (part f) includes the statement: ‘Dd

2n, for 1 < n < l

except Dd
4 when l = 3’. For D3h (for lπ = 3−) and D5h (for lπ = 5−) to enter, this relation

should rather contain: 1 < n � l; the strict inequality would be an error according to the
present work, and is inconsistent with their tabulation of C2 and T under lπ = 3−. The present
work agrees with the first inequality as strict; however, this is inconsistent with their listing
of Dd

2 for lπ = 5−. We retain the first inequality as strict and interpret the strictness of their
second inequality as a typographical error. On this favourable reading, the little groups of
O(3) of theorem 6.8 of Ihrig and Golubitsky (1984) give results in agreement with the present
results for negative parity (only), except for their inclusion of T as a little group of 3− and 4−.
From appendix B, we note that Td supplants T as the proper little group in 3−, and O similarly
supplants T in 4−; the relevant subduction frequencies do not increase on descending from
these groups to T . In each case, just this part of the multiple branching diagram fails to satisfy
the chain criterion.

Jarić (1986) quotes this work; his own work does not resolve these problems. Some minor
corrections to Jarić (1986) may be noted. Figure 1 of Jarić covers all invariants constructible
from powers of a rank L tensor via a sequence of ladder diagrams in which all lines have
rank L. Jarić’s ladder construction gives an overdetermined set of invariants (in fact an
infinite set of relations), of which the first two alone are pure: l = 0, L. The remaining
ones are arbitrarily written linear combinations of these and the other 2L − 2 independent
invariants. There are linear combinations between these when some or all the rank L terminals
are equal, corresponding to the reductions that occur when symmetrization of the product is
made. If they are equal in pairs, the tree angular momenta are even, halving the number of
invariants from 2L to L. When all four terminals are equal, the further linear relations that
must exist are unknown; Jarić appeals to the integrity basis analysis result of Bistricky et al
(1982) to show that the number of invariants is halved again. It is better to have a single
tree diagram as in Jarić’s Ī

4,1
L , not a sequence of ladder diagrams, and to allow all values

l = 0, 1, 2, . . . , 2L of the coupled irreps consistent with Kronecker products, not just L. This
labels the possible independent invariants uniquely—completely and without repetition—in
the case that no symmetrizations are applicable and the terminal tensors are different (though
all of rank L). (Jarić’s equations (2.1) and (2.2) need a factor 2 sin2 φ/2 in the integrand to
give the correct measure; this does not affect his conclusions.) Applications of integrity basis
theory are discussed by McLellan (1980), and graphical methods have been used for integrity
bases in SO(n) by Ichinose and Ikeda (1997). The integrity bases of O(3) have been extended
to the case of several tensors and related to angular momentum coupling trees for spin 1 and
1
2 (Minard et al 1983, Riddell and Stedman 1984, Stedman 1990).

Finally, we give a simple but nontrivial application of the chain criteria, namely the
little groups of the tetrahedral group T . Consider the group chains T ⊃ D2 ⊃ C2 ⊃ C1;
T ⊃ C3 ⊃ C1. From character theory we obtain for irrep A the subduction frequencies cA(T ,
D2, C3, C2, C1) = 1. Hence the little group of A is T (as is appropriate for the identity
representation). For the irrep E the frequencies are: cE(T ) = 0, cE(D2) = 1, cE(C2) = 1,
cE(C3) = 0, cE(C1) = 1. Hence D2 is the little group for E (or E

′
, the complex conjugate



6682 M J Linehan and G E Stedman

irrep). The three-dimensional irrepF has the subduction frequencies: cF (T ) = 0, cF (D2) = 0,
cF (C2) = 1, cF (C3) = 1, cF (C1) = 3. Hence one of the basis functions of F has the little
group C2 while another has the little group C3. Finally the linear combination of these two may
be combined with the third basis function, reducing the symmetry to that of the trivial little
group C1. This gives the little groups of the irreps of the tetrahedral group as T [1](A), D2 [1]
(E,E′), C2 [1], C3 [1], C1 [3](F). The numbers in square brackets indicate the dimension of
the most general vector in the representation space of T that has this little group.

Appendix B. Tables relevant to little group analysis

Tables B.1 and B.2 give the results of deducing the little groups from the massive chain criterion.
Table B.3 gives the subduction frequencies Cλ(H) from the Weyl trace formula, as used for
the traditional criteria. Tables B.4 and B.5 give the little groups of SO(3) (l = 0–4) and O(3)
(l = 0–9), both parities respectively.

Table B.1. Irreps of SO(3) for which the stated groups are little groups when l > 0. The special
cases for Y are l = 6, 10, 12, 15, 16, 18, 20–22, 24–28. Representation vectors for Y , O, T may
be determined from RACAH for each l (see appendix C for examples). κ ≡ (−1)k .

H cl (H) General Special l Representation vectors

Y

[
l

5

]
+

[
l

3

]
+

[
l

2

]
− l + 1 l � 30 Caption —

O

[
l

4

]
+

[
l

3

]
+

[
l

2

]
− l + 1 l � 12 4, 6, 8, 9, 10 —

T 2

[
l

3

]
+

[
l

2

]
− l + 1 l � 9 3, 6, 7 —

D∞ 1 l even — Zl
0

C∞ 1 l odd — Zl
0

Dn

[
l

n

]
l odd, 2 � n � l � 4 l = n = 3 Zl

n,−κ , Z
l
2n,−κ , Z

l
3n,−κ . . .

Dn

[
l

n

]
+ 1 l even, 2 � n � l � 4 l = n = 2 Zl

0, Z
l
nκ , Z

l
2nκ , Z

l
3nκ . . .

Cn 2

[
l

n

]
+ 1 l even, 2 � n � l/2 — Zl

0, Z
l
n+, Z

l
2n+, Z

l
3n+ . . .

Cn 2

[
l

n

]
+ 1 l odd, 2 � n � l — Zl

0, Z
l
n+, Z

l
2n+, Z

l
3n+ . . .

C1 2l + 1 l � 3 — Zl
0, Z

l
2+, Z

l
3±, Z

l
4±, . . .

Table B.2. Irreps l− (O(3)) for which the stated (non-inversion) groups are little groups when
l > 0. The little groups for irreps l+(O(3)) are the inversion groups, and the results may be
obtained from table B.1 with the mappings D∞ → D∞h, C∞ → C∞h, Y → Yh, O → Oh,
T → Th, (Dn → Dnh, Cn → Cnh if n is even), (Dn → Dnd , Cn → Cni if n is odd). The special
cases for Y are l = 6, 10, 12, 15, 16, 18, 20–22, 24–28. κ ≡ (−1)k , µ ≡ (−1)l , ν ≡ κµ.

H clπ (H) General Special cases Representation vectors

Y

[
l

5

]
+

[
l

3

]
+

[
l

2

]
− l + 1 l � 30 Caption —

O

[
l

4

]
+

[
l

3

]
+

[
l

2

]
− l + 1 l � 12 4, 6, 8, 9, 10 —
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Table B.2. (Continued)

H clπ (H) General Special cases Representation vectors

Td

[
l + 2

4

]
+

[
l

3

]
+

[
l + 1

2

]
− l l � 9 3, 6, 7 —

T 2

[
l

3

]
+

[
l

2

]
− l + 1 l � 12 6, 9, 10 —

D∞ 1 l even — Zl
0

C∞v 1 l odd — Zl
0

Dnd [(l + n) /2n] n even, 2 � n � l � 4 n = l = 2 Zl
nν, Z

l
3nν , Z

l
5nν . . .

Dnh [(l + n) /2n] n odd, 2 � n � l � 4 n = l = 3 Zl
nν, Z

l
3nν , Z

l
5nν . . .

Dn

[
l

n

]
+ 1 l even, 2 � n � l — Zl

0, Z
l
nκ , Z

l
2nκ , Z

l
3nκ . . .

Dn

[
l

n

]
l odd, 2 � n � l/2 — Zl

n,−κ , Z
l
2n,−κ , Z

l
3n,−κ . . .

Cnv

[
l

n

]
l even, 2 � n � l/2 — Zl

n−, Zl
2n−, Z

l
3n− . . .

Cnv

[
l

n

]
+ 1 l odd, 2 � n � l — Zl

0, Z
l
n+, Z

l
2n+, Z

l
3n+ . . .

Cnh 2

[
l + n

2n

]
n odd, 3 � n � l/3 — Zl

n+, Z
l
3n±, Z

l
5n± . . .

Cs 2

[
l + n

2n

]
l even, l � 4 — Zl

0, Z
l
2+, Z

l
3+, . . . , Z

l
l+

Cs 2

[
l + n

2n

]
l odd, l � 3 — Zl

2−, Z
l
3−, . . . , Z

l
l−

S2n 2

[
l + n

2n

]
n even, 2 � n � l/3 — Zl

n+, Z
l
3n±, Z

l
5n± . . .

Cn 2

[
l

n

]
+ 1 2 � n � l/2 — Zl

0, Z
l
n±, Zl

2n±, . . .

C1 2l + 1 l � 3 — Zl
0, Z

l
2+, Z

l
3±, . . . , Z

l
l±

Table B.3. Adjacent group branchings H ⊃ K , H ⊂ H ′ (for Lie groups and groups with n-fold
symmetry axes wheren � 6), and (except for the column headed f̄λ) subduction frequencies cλ (H)

for the irreps lπ , within O(3) for l � 6. These frequencies were calculated from the computer
program RACAH vol 3.1 (Butler 1995). The corresponding massive subduction frequency f m

λ (H)

is obtained by subtracting the massless subduction frequency f 0
λ (H) from the tabulated entries

(equation (4)). From equation (6) f 0
λ (H) is the smaller of 2l and f̄λ (H), which is also tabulated.

H Adjacent groups f̄λ 0− 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5− 6+ 6−

C1 ⊂ C5, C2, Ci , Cs, C3 3 1 3 3 5 5 7 7 9 9 11 11 13 13
Ci ⊃ C1; ⊂ C5i , C2h, C3i 3 0 3 0 5 0 7 0 9 0 11 0 13 0
Cs ⊃ C1; ⊂ C5h, C5v, C2h, C2v, C3v 1 0 1 2 3 2 3 4 5 4 5 6 7 6
C2 ⊃ C1; ⊂ C4, C2h,D3,D2, C6 1 1 1 1 3 3 3 3 5 5 5 5 7 7
C2h ⊃ C2, Ci , Cs ; ⊂ C4h,D2h, C6h,D3d 1 0 1 0 3 0 3 0 5 0 5 0 7 0
C2v ⊃ C2, Cs ; ⊂ C4v,D2d ,D2h, C6v 0 0 0 1 2 1 1 2 3 2 2 3 4 3
C3 ⊃ C1; ⊂ T ,D3, C6, C3i , C3v, C3h 1 1 1 1 1 1 3 3 3 3 3 3 5 5
C3h ⊃ C3, Cs ; ⊂ D3h, C6h 1 0 1 0 1 0 1 2 1 2 1 2 3 2
C3i ⊃ C3, Ci ; ⊂ Th, C6h,D3d 1 0 1 0 1 0 3 0 3 0 3 0 5 0
C3v ⊃ C3, Cs ; ⊂ Td , C6v,D3h,D3d 0 0 0 1 1 0 1 2 2 1 1 2 3 2
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Table B.3. (Continued.)

H Adjacent groups f̄λ 0− 1+ 1− 2+ 2− 3+ 3− 4+ 4− 5+ 5− 6+ 6−

C4 ⊃ C2; ⊂ C∞, C4h, C4v,D4 1 1 1 1 1 1 1 1 3 3 3 3 3 3
C4h ⊃ C4, C2h, S4; ⊂ C∞h,D4h 1 0 1 0 1 0 1 0 3 0 3 0 3 0
C4v ⊃ C4, C2v; ⊂ C∞v,D4d ,D4h 0 0 0 1 1 0 0 1 2 1 1 2 2 1
C5 ⊃ C1; ⊂ C5i , C5h, C5v,D5, C∞ 1 1 1 1 1 1 1 1 1 1 3 3 3 3
C5h ⊃ C5, Cs ; ⊂ D5h 1 0 0 1 1 0 1 0 1 0 1 2 1 2
C5i ⊃ C5, Ci ; ⊂ D5d , C∞h 1 0 1 0 1 0 1 0 1 0 3 0 3 0
C5v ⊃ C5, Cs ; ⊂ C∞v,D5d 0 0 0 1 1 0 0 1 1 0 1 2 2 1
C6 ⊃ C3, C2; ⊂ C∞,D6, C6h, C6v 1 1 1 1 1 1 1 1 1 1 1 1 3 3
C6h ⊃ C6, C3h, C3i , C2h; ⊂ C∞h,D6h 1 0 1 0 1 0 1 0 1 0 1 0 3 0
C6v ⊃ C6, C2v, C3v; ⊂ C∞v,D6h 0 0 0 1 1 0 0 1 1 0 0 1 2 1
C∞ ⊃ C6, C5, C4; ⊂ C∞h,D∞ 0 1 1 1 1 1 1 1 1 1 1 1 1 1
C∞h ⊃ C∞, C6h, C5i , C4h; ⊂ D∞h 0 0 1 0 1 0 1 0 1 0 1 0 1 0
C∞v ⊃ C∞, C6v, C5v, C4v; ⊂ D∞h 0 0 0 1 1 0 0 1 1 0 0 1 1 0

D2 ⊃ C2; ⊂ D2d , T ,D4,D2h,D6 0 1 0 0 2 2 1 1 3 3 2 2 4 4
D2d ⊃ D2, C2v, S4; ⊂ D4h,D6d , Td 0 0 0 0 1 1 0 1 2 1 1 1 2 2
D2h ⊃ D2, C2h, C2v; ⊂ D4h,D6h, Th 0 0 0 0 2 0 1 0 3 0 2 0 4 0
D3 ⊃ C3, C2; ⊂ O,Y,D6,D3d ,D3h 0 1 0 0 1 1 1 1 2 2 1 1 3 3
D3d ⊃ D3, C3i , C3v, C2h; ⊂ Oh, Yh,D6h 0 0 0 0 1 0 1 0 2 0 1 0 3 0
D3h ⊃ D3, C3h, C3v; ⊂ D6h,D6d 0 0 0 0 1 0 0 1 1 1 0 1 2 1
D4 ⊃ D2, C4; ⊂ D∞,O,D4h 0 1 0 0 1 1 0 0 2 2 1 1 2 2
D4d ⊃ D4, C4v; ⊂ D∞h 0 0 0 0 1 0 0 0 1 1 0 1 1 1
D4h ⊃ D4, C4h, C4v,D2h,D2d ; ⊂ Oh,D∞h 0 0 0 0 1 0 0 0 2 0 1 0 2 0
D5 ⊃ C5, C2; ⊂ D5d ,D5h,D∞, Y 0 1 0 0 1 1 0 0 1 1 1 1 2 2
D5d ⊃ D5, C5i , C5v, C2h; ⊂ D∞h 0 0 0 0 1 0 0 0 1 0 1 0 2 0
D5h ⊃ D5, C5h; ⊂ D∞h 0 0 0 0 1 0 0 0 1 0 0 1 1 1
D6 ⊃ D3,D2, C6; ⊂ D∞,D6h,D6d 0 1 0 0 1 1 0 0 1 1 0 0 2 2
D6d ⊃ D6,D2d ; ⊂ D∞h 0 0 0 0 1 0 0 0 1 0 0 0 1 1
D6h ⊃ D6,D2h,D3h,D3d , C6h, C6v; ⊂ D∞h 0 0 0 0 1 0 0 0 1 0 0 0 2 0
D∞ ⊃ C∞,D6,D5,D4; ⊂ D∞h, SO(3) 0 1 0 0 1 1 0 0 1 1 0 0 1 1
D∞h ⊃ D∞, C∞v,D6h,D5d ,D4h; ⊂ O(3) 0 0 0 0 1 0 0 0 1 0 0 0 1 0
Y ⊃ T ,D5,D3, C5v; ⊂ SO(3), Yh 0 1 0 0 0 0 0 0 0 0 0 0 1 1
Yh ⊃ Y,D5d ; ⊂ O(3) 0 0 0 0 0 0 0 0 0 0 0 0 1 0
O ⊃ T ,D4,D3; ⊂ SO(3),Oh 0 1 0 0 0 0 0 0 1 1 0 0 1 1
O(3) ⊃ SO(3),D∞h, Yh,Oh 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Oh ⊃ O, Td, Th,D3d ,D4h, C3i ; ⊂ O(3) 0 0 0 0 0 0 0 0 1 0 0 0 1 0
S4 ⊃ C2; ⊂ C4h,D2d 1 0 1 0 1 2 1 2 3 2 3 2 3 4
SO(3) ⊃ D∞, Y,O; ⊂ O(3) 0 1 0 0 0 0 0 0 0 0 0 0 0 0
T ⊃ D2, C3; ⊂ O,Y, Th, Td 0 1 0 0 0 0 1 1 1 1 0 0 2 2
Td ⊃ T ,D2d ; ⊂ Oh 0 0 0 0 0 0 0 1 1 0 0 0 1 1
Th ⊃ T ,D2h, C3i ; ⊂ Oh, Yh 0 0 0 0 0 0 1 0 1 0 0 0 2 0

Table B.4. Little groups H of irreps of SO(3) for l � 4, and for n � 4 in Dn, Cn; a prescription for
general l, n is in table B.1. Nonzero entries indicate little groups, the numbers being the appropriate
subduction frequencies cλ.

l 0 1 2 3 4

SO(3) 1 — — — —
D∞ — — 3 — 3
C∞ — 3 — 3 —
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Table B.4. (Continued)

l 0 1 2 3 4

O — — — — 4
T — — — 4 —
D4 — — — — 5
D3 — — — 4 5
D2 — — 5 — 6
C3 — — — 5 —
C2 — — — 5 7
C1 — — — 7 9

Table B.5. Little groups H of irreps of O(3) for l � 9, and for n � 9 in Dn, Cn; a prescription for
general l, n is in table B.2. Nonzero entries indicate little groups, the numbers being the appropriate
subduction frequencies cλ.

H l+ 0 1 2 3 4 5 6 7 8 9

O(3) 1 — — — — — — — — —
D∞h — — 3 — 3 — 3 — 3 —
C∞h — 3 — 3 — 3 — 3 — 3
Yh — — — — — — 4 — — —
Oh — — — — 4 — 4 — 4 4
Th — — — 4 — — 5 4 — 5
D9d — — — — — — — — — 4
D8h — — — — — — — — 5 4
D7d — — — — — — — 4 5 4
D6h — — — — — — 5 4 5 4
D5d — — — — — 4 5 4 5 4
D4h — — — — 5 4 5 4 6 5

D3d — — — 4 5 4 6 5 6 6
D2h — — 5 — 6 5 7 6 8 7
C9i — — — — — — — — — 5
C8h — — — — — — — — — 5
C7i — — — — — — — 5 — 5
C6h — — — — — — — 5 — 5
C5i — — — — — 5 — 5 — 5
C4h — — — — — 5 — 5 7 7
C3i — — — 5 — 5 7 7 7 9
C2h — — — 5 7 7 9 9 11 11
Ci — — — 7 9 11 13 15 17 19

H l− 0 1 2 3 4 5 6 7 8 9

SO(3) 1 — — — — — — — — —
D∞ — — 3 — 3 — 3 — 3 —
C∞v — 3 — 3 — 3 — 3 — 3
Y — — — — — — 4 — — —
O — — — — 4 — 4 — 4 4
Td — — — 4 — — 4 4 — 4
T — — — — — — 5 — — 5
D9h — — — — — — — — — 4
D9 — — — — — — — — — —
D8d — — — — — — — — 4 4
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Table B.5. (Continued)

H l+ 0 1 2 3 4 5 6 7 8 9

D8 — — — — — — — — 5 —
D7h — — — — — — — 4 4 4
D7 — — — — — — — — 5 —
D6d — — — — — — 4 4 4 4
D6 — — — — — — 5 — 5 —
D5h — — — — — 4 4 4 4 4
D5 — — — — — — 5 — 5 —
D4d — — — — 4 4 4 4 4 4
D4 — — — — 5 — 5 — 5 5

D3h — — — 4 4 4 4 4 4 5
D3 — — — — 5 — 5 5 5 6
D2d — — 4 — 4 4 5 5 5 5
D2 — — 5 — 5 5 6 6 6 7
C9v — — — — — — — — — 5
C8v — — — — — — — — — 5
C7v — — — — — — — 5 — 5
C6v — — — — — — — 5 — 5
C5v — — — — — 5 — 5 — 5
C4v — — — — — 5 — 5 5 6
C3v — — — 5 — 5 5 6 5 7
C2v — — — 5 5 6 6 7 7 8
S4 — — — — — — 6 6 6 6
C3h — — — — — — — — — 6
Cs — — — 6 6 8 8 10 10 12
C4 — — — — — — — — 7 7
C3 — — — — — — 7 7 7 9
C2 — — — — 7 7 9 9 11 11
C1 — — — 7 9 11 13 15 17 19

Appendix C. Inspection in higher irreps of SO(3), and basis functions

If l > 1, then in addition, either a2 = a−2 = 0 or φ = ±π (so that exp (±2iφ) = 1), i.e. a
two-fold rotation only is possible. Also for l > 1, the freedom of choosing a rotation by 3
Euler angles leaves one degree of freedom, the third Euler angle, to be exploited as required.
In the case l = 2 we can choose the third Euler angle to make the coefficient of, say, Zl

−2
zero; this leaves the functions Z2

0 , Z2
2+ as adequate to describe any linear combination. Since

any linear combination of these functions has the D2 rotational symmetry which they share,
this is the minimum rotational symmetry in l = 2. In addition these functions (with even
m) have compatible reflection symmetries, so that in the case of even parity a general linear
combination has D2h symmetry.

If l > 2, then in addition, either a3 = a−3 = 0 or φ = ±2π/3, i.e. only a three-
fold rotation can evade the necessity of requiring a±3 = 0. Since a two- and three-fold
rotation are not compatible, it is impossible to avoid imposing at least 3 conditions on a±2

and a±3 (3 rather than 4, because of the possibility of using the third Euler angle to cancel the
fourth); and so it is impossible for a general linear combination at l = 3 to have a nontrivial
rotational symmetry. However, the symmetry of a general linear combination of the full basis
set
{
Z3

m±
}

can be simplified by an appropriate axis choice to restrict the number of functions
under consideration to

{
Z3

0, Z
3
2±, Z

3
3±
}

with the free choice of one linear relation between the
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coefficients a2±, a3± (for example a2− = 0). Since the reflection symmetries of Z3
3± (where

m is odd) are incompatible with those of the other functions (with even m), no reflection plane
can survive in general in the case l > 2. Hence Ci and C1 are the maximal symmetries of a
general linear form and so little groups for positive and negative parity respectively for l > 2.

This proceeds similarly for higher l; for l = 4 we can consider a general linear combination
as a combination of

{
Z4

0, Z
4
2±, Z

4
3±, Z

4
4±
}

with the coefficient of one of theZ4
m− functions being

set to zero. Special functions and their little groups at l = 4 include equation (10) for O and
at l = 6 include Y :

(√
11Z6

0 −√
14Z6

5

)
/5; O:

(−Z6
0 +

√
7Z6

4

)
/
√

8; T :
(−Z6

0 +
√

7Z6
4

)
/
√

8,(− √
11Z6

2 +
√

5Z6
6

)
/4.

Since the little groups of positive parity irreps are determined purely by their rotational
symmetry we need only consider pure rotations in using the inspection method. The tesseral
harmonic basis functions in 3+ have the following symmetries (confirmed by the program
RACAH): Z3

0: C∞h, Z3
1±: C2h, Z3

2±: Th, Z3
3±: D3d . A general linear combination of Zl

m+
with Zl

m− will always have the same symmetry as Zl
m+ for the reasons discussed in section 4.

We may now consider all possible linear combinations of the above. This is essentially a
combinatorial exercise although we use the fact that it is always possible to remove Z3

1± and
one other function with m > 0, say Z3

m−, by performing the appropriate rotation. The results
are as follows: Z3

0, Z
3
2+: C2h, Z3

0, Z
3
3+: C3i , Z3

2−, Z
3
3+: C2h, Z3

2+, Z
3
3±: Ci , Z3

0, Z
3
2+Z

3
3±: Ci .

In short, the massive chain criterion finds all possible little groups. The massive subduction
frequency also gives the number of massive components of the most general representation
vector that has a particular little group. The vectors which are appropriate for different l, H are
indicated in tables B.1, B.2. The convention by which the massless components are removed
is that of sections 5.3 and 6. According to the above we could have chosen Z3

−2, Z
3
3 as the

vector for C2h instead of Z3
0, Z

3
2. These two vectors actually belong to the same stratum.
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